Современные Business Intelligence (BI) системы на примере IBM Cognos BI. Бизнес интеллидженс


Что такое Business Intelligence BI и зачем он нужен?

Смотрите видео к статье:

Что такое BI (Business Intelligence)?

Business Intelligence = BI = Бизнес – аналитика (rus) — это набор IT-технологий для сбора, хранения и анализа данных, позволяющих предоставлять пользователям достоверную аналитику в удобном формате, на основе которой можно принимать эффективные решения для управления бизнес-процессами компании.

Все уровни пользователей, от сотрудников до учредителей, получают гибкий доступ к необходимой им управленческой отчетности, не прибегая к помощи IT-специалистов.

Концепция платформы BI

Сегодня на рынке существует несколько платформ Бизнес – аналитики (BI), концептуально они представляют собой следующее:

BIWEB

  • ETL-инструменты: программы, позволяющие выполнять загрузку данных в DWH из различных учетных систем.
  • DWH-хранилище: полноценная база данных SQL для подготовки и хранения данных для аналитики.
  • OLAP-кубы: технология, позволяющая делать в реальном времени (1-5 секунд) любые отчеты и проводить полноценный анализ данных.
  • Клиентские приложения: как правило, для детального анализа данных и построения динамических отчетов пользователи используют Сводные таблицы Microsoft Excel, подключенные к OLAP-кубам. Для поверхностного анализа и визуализации ключевых показателей также используются WEB-приложения, которые должны поддерживать доступ к отчетам с любого устройства: компьютер, планшет, телефон.

Архитектура платформы Microsoft BI

На сегодняшний день, на мой взгляд, платформа «Microsoft BI» — это лучшее решение на рынке BI-систем в первую очередь по соотношению «Цена – Качество – Современность».

И что также очень важно – основным и «родным» приложением, в котором работают пользователи, для этой платформы является уже известный всем Microsoft Excel.

Более того, все компоненты этой BI-платформы доступны в одном программном обеспечении – «Microsoft SQL Server», которое приобретается один раз без необходимости последующих платежей за использование. Подробно о лицензировании SQL Server 2016.

В состав Microsoft SQL Server входят следующие компоненты BI-платформы:

BIWEB

  • ETL-инструменты: за это отвечает «Служба Integration Services», сокращенно SSIS.
  • DWH-хранилище: за это отвечает «Компонент SQL Server Database Engine», который является полноценной базой данных Transact-SQL.
  • OLAP-кубы: за это отвечает «Служба Analysis Services», сокращенно SSAS.
  • Клиентские приложения: для полноценного анализа данных используется «Microsoft Excel-сводные таблицы», а в качестве WEB-приложения используется «Служба Reporting Services», сокращенно SSRS.
Зачем нужен BI (Business Intelligence)?

Во-первых, общий подход к хранению данных говорит, что есть:

  • Учетные системы (OLTP — транзакционные системы), структура базы данных которых ориентирована на быстрый ввод данных, при этом данные в таких базах хранятся в неподготовленном для аналитики виде. На таких базах можно эффективно построить только оперативный отчет за небольшой период, и, как правило, фиксированного формата.
  • Аналитические системы (OLAP — аналитические системы), структура базы данных которых наоборот ориентирована на быструю аналитику любых объемов данных. Данные в таких базах хранятся уже в подготовленном для аналитики виде. Это позволяет эффективно в реальном времени получать отчеты за любой период в любой детализации.

Во-вторых, дополнительно BI дает:

  • Скорость построения отчетов (особенно это важно при запросе больших периодов данных, в которых больше 100 000 строк).
  • Динамический анализ данных в любой детализация (Товары, Клиенты, Поставщики, Время, Каналы продаж, Территории продаж и т.д.).
  • Быстрый анализ любого объема данных с помощью Сводных таблиц в Excel, при этом исходные данные не требуется загружать в Excel (технология OLAP).
  • Автоматизация подготовки данных для отчетов и построения корпоративной отчетности.
  • Консолидация данных (данные для отчетов могут быть в разных учетных системах).
  • Анализ показателей План/Факта, Анализ выполнения различных KPI.
  • Удобная визуализация данных в Excel или на Web (при этом обновленные данные в отчет поступают автоматически).
  • Единый и удобный доступ к аналитической отчетности для всех сотрудников через корпоративный BI портал.
  • Достоверность данных (любой отчет, построенный на основе данных из BI, является эталонным и актуальным в любой момент времени).
  • Лицензирование (стоимость 1-го пользователя BI, как правило, дешевле, чем стоимость одного пользователя Учетной системы).
  • Уменьшение нагрузки на Учетные системы (пользователи, которые непосредственно не связанны с учетом данных, перестают запрашивать различные отчеты и нагружать учетную систему, а переходят на BI).
  • В целом — повышение общей управляемости и эффективности бизнеса.

biweb.ru

Как управлять компанией с помощью Business Intelligence

На большинстве предприятий по-прежнему падают продажи и производство, дорожают кредитные ресурсы, уменьшается потребление. Все это требует проведения срочных изменений в компании, и в частности, сокращения затрат. Именно поэтому, сейчас от управленца требуется использование при этом современного ИТ- инструментария. Можно даже сказать, что использование современных аналитических систем (Business Intelligence) является сегодня одним из условий выживания компании.

Business Intelligence

Business Intelligence — управление на основе информации

Еще в восьмидесятых годах прошлого века появились первые аналитические приложения, которые предназначались для поддержки принятия решений. Эти инструменты серьезно отличались от транзакционных учетных приложений, которые в первую очередь были сконцентрированы на операционной деятельности. Тот объем информации, который был сформирован благодаря использованию таких систем, дал серьезный импульс развитию нового класса приложений предназначенных для поддержки принятия решений менеджментом. Эти системы были названы системами оперативной аналитической обработки (Online Analytical Processing, OLAP). Уже в начале девяностых годов компания Gartner Group, ввела термин бизнес-аналитика, который сегодня широко используется для обозначения аналитических приложений.

«Business Intelligence (BI) превратилась в стратегическую инициативу, и теперь ИТ-директора и руководители бизнеса признают ее как средство повышения эффективности работы и инновационности предприятий», — считает вице-президент Gartner по исследованиям Андреас Биттерер.По результатам опроса, проведенного этой компаний, в котором приняли участие более тысячи руководителей информационных служб, бизнес-аналитика была признана приоритетной технологией в 2008 году. При этом интерес к бизнес-аналитике сохраняется уже боле трех лет подряд. И только этот год показал изменение тренда интереса к данной теме, в 2009 году бизнес-аналитика стала восьмой с точки зрения приоритетов, и это связано с тем, что большинство зарубежных компаний уже включили данный инструмент в практику своей деятельности.

Однако российская практика применения BI-инструментария пока находится в зачаточном состоянии, и ближайшие пару лет можно не беспокоиться о спаде интереса к этим технологиям. Ведь, к сожалению, несмотря на достаточно высокий уровень существующей автоматизации российских компаний, большинство генеральных директоров еще пока не имеют компьютера на своих рабочих местах, и уж точно не принимают решения на основе анализа информации из аналитических систем. Внедренные во многих компаниях ERP-системы дали возможность планировать ресурсы компании и сделать ее прозрачнее. Но от этого принятие решений на высшем уровне не стало проще, и все еще важнейшим является такое качество руководителя, как интуиция.

Как не странно, но основным результатом прошедшего бума автоматизации российских компаний являются затраты в миллионы долларов, при этом стратегические решения все также принимаются по старинке. Многие генеральные директора сейчас задают вопрос: «Мы потратили не один миллион на автоматизацию, но почему я не вижу осязаемых результатов в моей деятельности». В большинстве случаев это связано с тем, что во многих компаниях есть ответственный за информационные технологии – директор по ИТ, но нет ответственного за информацию. Ведь сейчас в большинстве компаний накоплены «океаны информации», и для того чтобы ее обработать и применить для поддержки принятия решений необходимы специализированные технологии — Business Intelligence.

Практика показывает, что в настоящее время с огромной скоростью растет объем хранимой и анализируемой информации во всех отраслях, при этом некоторые из них можно назвать явными лидерами. В банках, страховых компаниях, телекоммуникационных компаниях и розничной торговле объем обрабатываемых данных исчисляется терабайтами, а от правильности использования этих данных зависит уровень удовлетворения требований клиентов, а значит и конкурентные преимущества. Те, кто первые смогут преобразовать накопленные данные в информацию необходимую для принятия взвешенных решений смогут победить в конкурентной борьбе.

тоже время вместе с объемом информации растет и скорость ее генерации, а также ее разнообразие, что требует стратегического подхода к управлению информацией и внедрению BI инструментов. Ведь выбирая технологии для решения сегодняшних задач без учета будущих потребностей, можно столкнуться с их негодностью уже через пару лет. Еще одной сложностью для большинства компаний является низкое качество данных, а значит и недостаточная достоверность получаемой информации. Ведь если информацию вносить в систему раз в месяц и из недостоверных источников, то и решение, принятое на основе такой информации, скорее всего, будет уже «посмертным». В такой ситуации невозможно работать по старинке, рано или поздно понадобятся специализированные инструменты верификации и анализа информации.

Именно поэтому, аналитическая компания Gartner уже несколько лет отмечает общемировой интерес к аналитическим приложениям, а на российском рынке наблюдается огромное число проектов по внедрению данных инструментов. Это связано с тем, что от внедренных ERP-систем пока нет той отдачи, на которую все рассчитывали. И сейчас только BI технологии позволяют автоматизировать сбор и анализ информации, а также представление ее в виде удобном для менеджмента.

Задачи анализа информации настолько разнообразны, что помимо отраслевой специализации BI инструменты имеют различия по классу решаемых задач. При этом, как бы ни хотелось решить все задачи единым и универсальным BI инструментом – это невозможно. В настоящее время на российском рынке сейчас присутствует множество различных BI инструментов, закрывающие те или иные потребности компаний. Однако, покупка BI — инструмента, часто не дает ожидаемых результатов, ведь нужно не только купить инструментарий и развернуть его в своей компании, но и много времени уделить качеству существующих данных и способам их верификации. К сожалению, во многих компаниях сейчас еще нет той единой версии правды, которая необходима для принятия решения.

Именно поэтому, покупка инструментов Business Intelligence (BI) не приведет компанию к успеху. Для эффективного внедрения BI-инструментов в компании необходимо создать соответствующие условия, и в первую очередь это поддержка руководителей. Ведь пользователями данных приложений должны быть первые лица компании, и если этого не будет, то инструменты, скорее всего, будут «пылиться на полке». Переломить привычку управлять по старинке, вот что нужно сделать в компании, а это не так просто.Помимо изменений в управлении, необходимо согласование мероприятий по использованию BI-инструментов с существующей бизнес- стратегией компании.

Что и когда измерять? На каких показателях основывать стратегические и тактические решения? Кто отвечает за конкретные показатели? Без ответов на эти вопросы внедрение и развитие BI-инструментов может пойти неправильным путем.

И конечно для быстрого и эффективного развертывания технологий бизнес-анализа необходимо определение ответственного сотрудника и соответствующего центра компетенции, иначе ничего не выйдет. Ведь чтобы собрать воедино все потребности множества функциональных заказчиков и создать соответствующую информационную инфраструктуру, необходимо постоянная работа и принятие многих управленческих решений на уровне первых руководителей. Стратегия использования BI должна проходить сквозь всю компанию и начинаться от процессов сбора первичных данных и заканчиваться процессами принятия стратегических решений, иначе доверия к получаемой информации не будет, а значит, при принятии решений аналитическая информация не будет использована.

Внедрение Business Intelligence

Фактически для успешного внедрения BI-технологий в компании необходимо создание BIG team – Business Intelligence Governance, – т.е. центра компетенции по управлению информацией на уровне всей компании. Создание такого центра компетенции по BI позволяет централизовать ответственность и компетенцию за управление информацией в компании, а также навести порядок среди используемых BI инструментов.

Центр компетенции по BI может иметь стандартную структуру в которой объединяются бизнес- заказчики и сотрудники, зона ответственности которых лежит в области управления информационными технологиями и информацией (ИТ-директор, архитектор информации, бизнес-аналитики и т.д.). При этом в качестве основных задач центра компетенции можно выделить следующие: управление потребностями бизнес -заказчиков, выбор технологий управления информацией, методологическое руководство, стандартизация работ и используемых технологий, накопление компетенции, управление качеством данных.

Способы организации такого центра компетенции тоже могут быть разные:· функциональное подразделение, подчиняющееся ИТ-подразделению;· подразделение, подчиняющееся операционному управлению;· распределенная структура с подчинением генеральному директору;· виртуальная организация.

Форма организации может быть любая, главное чтобы в компании появились ответственные за управление информацией и бизнес-анализ. По информации компании Gartner, наиболее часто BIG team находится в ИТ-подразделении, что не всегда позволяет придать нужные приоритеты данным работам. Ведь создание такого центра компетенции в первую очередь необходимо для централизации ответственности за управления информацией и использование BI приложений. Поэтому наиболее эффективно, если центр компетенции будет подчиняться напрямую генеральному директору или его заместителю. При этом основополагающим вопросом, с точки зрения эффективности созданного подразделения, является присвоение ему соответствующих полномочий. На практике данные структуры существуют не более чем в одном проценте российских компаний, что еще раз подтверждает невысокую зрелость российского менеджмента в области управления информацией.

Для понимания стратегии развития данного направления первым результатом работы созданного центра компетенции должна стать стратегия в области управления информацией и использования инструментов бизнес-анализа. Без такого системного взгляда есть большая вероятность, что бизнес — заказчики будут использовать различные BI-инструменты с пересекающейся функциональностью, что в свою очередь увеличит затраты, и не позволит получить ожидаемые преимущества. Сейчас нет смысла тратить деньги без определения четкой стратегии развития, иначе возникнет зоопарк BI — приложений, который будет неуправляем.

Существующие сейчас тенденции развития рынка BI приложений заключаются в росте отраслевой и функциональной специализации BI платформ, а также к увеличению их числа. Таким образом, со стороны компании необходимо четкое понимание своих потребностей и выбор соответствующих BI-приложений, при этом учитывая рост числа пользователей BI-инструментов в компании, это становится все более и более критичным.

Как уже отмечалось, прошедшая волна внедрений ERP систем в российских компаниях создала платформу, на основании которой, с помощью BI-инструментов, можно и нужно выбрать необходимую для принятия решений информацию. Поэтому, с ухудшением внутренней ситуации, компании обратили внимание на вопросы своей внутренней организации и эффективности, и начали активно использовать BI приложения, которые раньше скорее были игрушкой бизнес-аналитиков, чем реальным инструментом.Одной проблемой, которая сейчас требует решения при внедрении BI- инструментов — качество данных в компании. Аналитическая компания Gartner предлагает следующую классификацию в качества данных по уровням: оптимизированный, управляемый, упреждающий, реактивный, осведомленный. При этом чем выше качество данных в компании, тем больше выгода для бизнеса, что в свою очередь позволяет перейти от управления на основе интуиции к управлению на основе хорошего ощущения.

Преимущества Business Intelligence

В качестве преимуществ использования BI приложений можно выделить следующие. Прежде всего, Business Intelligence (BI) снижает расходы на управление информацией, поскольку избавляет от избыточных процессов извлечения данных и существующего дублирования информации. Системы BI экономят время сотрудников за счет более эффективной обработки информации, а возможность анализировать большие массивы данных позволяет уменьшить число сотрудников требуемых для обработки информации.

По мере развертывания средств бизнес-анализа в компании, пользователи начинают выполнять анализ и делать прогнозы, и тогда преимущества BI- приложений становятся еще заметнее. Например, применение Business Intelligence (BI) на стратегическом уровне может позволить выйти на новый рынок, изменить направление развития компании или выпустить новую линию услуг.С точки зрения развития BI-приложений, тренд развития этих систем направлен на усиление специализации. Уже появились системы анализа бизнеса в реальном времени Business Activity Monitor (BAM), которые позволяют предоставлять для принятия решений данные, которые появились несколько минут назад. Эти системы оказывают значительную помощь среднему уровню менеджмента, поскольку позволяют поддерживать принятие оперативных решений. Также в отдельный класс выделились системы анализа бизнес-процессов – Process Intelligence, которые позволяют осуществлять контроль и анализ (контроллинг) исполняемых бизнес-процессов, а также анализ организационной эффективности сотрудников.

Такое пересечение технологий управления бизнес-процессами (Business Process Management) и систем бизнес-анализа (Business Intelligence) позволяют не просто увидеть проблему, но и найти ее причину, что в свою очередь дает возможность ее исправить до наступления последствий.В качестве заключения можно отметить, что рынок BI-инструментов растет, и на нем происходят серьезные поглощения. Крупные игроки, такие как SAP, Microsoft, Oracle покупают наиболее перспективные BI-технологии, и интегрируют их в свои решения. А это явный знак востребованности BI инструментария и показатель того, что ближайшее годы развитие компаний будет идти в этом направлении.

Андрей Коптелов, Журнал Генеральный Директор

koptelov.info

Что такое Business Intelligence? Обзор BI систем

Business intelligence (BI) - программное обеспечение, созданное для помощи менеджеру в анализе информации о своей компании и её окружении.  Большинство инструментов Business intelligence применяются конечными пользователями для доступа, анализа и генерации отчетов по данным, которые чаще всего располагаются в хранилище, витринах данных или оперативных складах данных. Разработчики приложений используют BI-платформы для создания и внедрения BI-приложений, которые не рассматриваются как BI-инструменты. Примером BI-приложения является информационная система руководителя EIS.

2016. Microsoft, Qlik и Tableau вышли в лидеры рынка Business Intelligence

Аналитическая компания Gartner опубликовала магический квадрант провайдеров систем бизнес-аналитики. И если в прошлом году на этой диаграмме невозможно было выделить лидеров (там была толпа вендоров), то в этом году выделились три явных лидера, оставивших конкурентов далеко позади: Microsoft, Qlik и Tableau. Особенно отмечается прогресс Microsoft, чье решение Power BI, основанное на облачных вычислениях, машинном обучении и голосовом интерфейса Cortana, оказалось одновременно мощным и простым для пользователей.

2015. Компания Интерпроком - бронзовый бизнес-партер IBM Cognos Business Intelligence

Компания «Интерпроком», системный интегратор, разработчик и дистрибьютор программного обеспечения, получила статус сертифицированного бронзового партнера IBM Cognos Business Intelligence. «Интерпроком» стал вторым в России партнером IBM, аккредитованным для работы с системами на платформе IBM Cognos BI. Чтобы получить новый статус, специалисты компании прошли сертификацию, подтвердив свои глубокие знании платформы IBM Cognos BI: умение интегрировать ее с различными приложениями, строить модели, дорабатывать процессы и формы необходимые бизнесу заказчика, - а также доказали, что качество реализованных ими проектов полностью отвечает всем стандартам IBM. Статус эксперта по наиболее актуальным платформам IBM свидетельствует, что заказчики «Интерпроком» получают полный спектр услуг интеграции систем мировых вендоров при образцовом качестве реализации проектов.

2014. Искусственный интеллект Watson подключат к Твиттеру ради бизнес-пользователей

(Джинни Рометти, глава IBM, и Дик Костроло, глава Twitter)Недавно компания IBM решила использовать свой суперкомпьютер Watson для помощи бизнесменам и руководителям. Они запустили сервис Watson Analytics, который позволяет строить аналитические таблицы и графики посредством запросов, написанных на человеческом (английском) языке. Однако, анализировать собственные данные компаний - это слишком легкая задача для искусственного интеллекта Watson. Вот проанализировать всю социальную сеть типа Twitter и выдать ценный совет руководителю - это более достойное занятие. Для этого IBM заключила соглашение с Twitter и получила прямой доступ к его базе данных. Представители компаний говорят, что бизнесы уже некоторое время используют сканеры социальных сетей для целей поддержки и маркетинга, однако это лишь "скольжение по поверхности реки данных". Интеграция Twitter и Watson позволит опуститься гораздо глубже - например, использовать отзывы людей для разработки новых продуктов или оптимизации логистики производства. ***

2014. Oracle запустил облако Business Intelligence

Oracle представила новый сервис Business Intelligence Cloud Service, позволяющий анализировать данные из различных источников, включая приложения Oracle, развернутые в "облаке" или непосредственно на предприятии, чтобы быстро создать функционально насыщенные, интерактивные аналитические приложения. Клиенты могут получать информацию и анализировать ее в любое время, в любом месте с мобильных устройств. Простой интерактивный пользовательский интерфейс со встроенными подсказками ускоряет освоение продукта и повышает продуктивность. Пользователи с навыками работы с Oracle BI или Oracle Cloud Applications могут приступить к использованию сервиса без дополнительного обучения.

2014. КРОК запустил облачное решение класса Business Intelligence

Системный интегратор Крок запустил сервис бизнес-аналитики с говорящим названием "Business Intelligence as a Service" или BIaaS. Решение рассчитано на крупные организации, заинтересованные в снижении капитальных затрат и ускорении принятия управленческих решений. Система построена на продукте EMC Greenplum и представляет собой решение уровня Big Data. С помощью этого инструмента можно анализировать и сравнивать большие объемы информации, выстраивать ключевые показатели и принимать бизнес-решения, минуя стадию капитальных затрат на приобретение софта, лицензий и возможную модернизацию инфраструктуры. Решение позволяет реализовать три возможных сценария работы с данными — аналитика для ритейла, анализ показателей работы контакт-центра, а также оценка управленческой деятельности организации на соответствие KPI.

2013. BusinessQ - web система бизнес анализа для малых и средних компаний

Обычно малый и средний бизнес не может приобрести и внедрить дорогостоящую систему бизнес-анализа, а затем держать в штате специалиста для работы с этой системой. Поэтому руководители малых компаний даже и не думают над тем, какие выгоды их бизнесу может принести Business Intelligence система. Хорватская компания Qualia создала Business Intelligence решение, предназначенное специально для малого и среднего бизнеса - BusinessQ. Теперь эта система стала доступна и в нашей стране. Это довольно простое веб-приложение с низкой стоимостью. Необходим всего час на изучение и настройку, и дальше вся нужная информация в наглядном виде поступает пользователю. Можно создавать не только статические отчеты, но и интерактивные панели (дашборды) для руководителя, чтобы он был в курсе важных показателей работы компании.

2012. SQL Server 2012 получит инструменты Business Intelligence

Microsoft провела веб-презентацию следующего поколения СУБД корпорации — SQL Server 2012. В ходе веб-трансляции выступили с докладами вице-президенты Microsoft Тед Куммерт и Квентин Кларк, первый из которых рассказал о «замысле Microsoft в области эволюции данных», второй — сделал обзор особенностей нового SQL Server. SQL Server 2012 будет выпущен в трех редакциях, в том числе впервые — в варианте Business Intelligence, в котором будут присутствовать современные функции анализа и визуализации данных. Кроме того, запланирована редакция Enterprise Edition, в которой помимо всех особенностей варианта BI будут развитые функции безопасности и высокой готовности, а также столбцовое хранение данных.

2011. Oracle Business Intelligence работает на iPad

Oracle представил новую версию системы бизнес-аналитики Oracle Business Intelligence, которая теперь может работать на iPad и iPhone. Мобильная версия обеспечивает доступ к полному спектру приложений Oracle Business Intelligence, включая интерактивные и регламентные отчеты, информационные панели, уведомления, системы сбалансированных показателей с поддержкой всех стандартов как реляционного, так и OLAP-анализа. Таким образом, руководитель может в удобном графическом виде просматривать аналитику для данных из ERP и CRM, инициировать действия и запускать рабочие процессы непосредственно на своем мобильном устройстве, что помогает сократить время, необходимое для принятия решений, и способствует повышению гибкости и динамичности организации в целом.

2010. Аплана и Cyscom запустили SaaS сервис класса Business Intelligence

Российский интегратор Аплана и британский SaaS провайдер (с российскими разработчиками) Cyscom, выводят на российский рынок сервис PinPoint. Это инструмент для бизнес-анализа, обеспечивающий визуальное и интуитивно понятное представление данных из множества различных источников (включая информационные системы, базы данных, неструктурированные файлы, веб-приложения, корпоративные порталы, документы MS Office и новостные ленты). PinPoint позволяет легко создавать информационные панели и работает как в онлайн, так и оффлайн режимах.. Cyscom уже довольно давно присутствует на российском рынке. В частности, в прошлом году они совместно с IBS Datafort и Softkey создали SaaS сервис для совместной работы Point4All. В основе облачной платформы Cyscom Cloudseed, на которой строятся все эти приложения, лежат технологии Microsoft - .Net, SQL, WSS, Windows и собственные разработки компании.

2010. SAP запустил SaaS сервис для Business Intelligence

SAP наконец-то выпустил свое первое полноценное SaaS приложение. И им стала не ожидаемая ERP система, а решение для бизнес-аналитики, созданное на базе купленной в 2007 году французской системы Business Objects. Продукты подразделения SAP BusinessObjects уже некоторое время предоставлялись в аренду клиентам компании, но SAP BusinessObjects BI OnDemand - это действительно классическое SaaS приложение с multitenant-архитектурой, объединяющее все эти инструменты в один сервис. Система предназначена для среднего бизнеса и обеспечивает быстрый доступ к данным, поиск по ключевым словам, инструменты формирования отчетов, визуализации данных и обмена ими, причем для этого не нужно переключаться между разными приложениями. Начальная версия уже доступна клиентам и партнерам компании, которые могут заниматься ее внедрением - интеграцией с онлайновыми или внутрикорпоративными источниками данных.

2009. Business Intelligence в России 2009: системы бизнес-анализа

Центр выбора технологий и поставщиков TAdviser предлагает Вашему вниманию аналитический отчет Business Intelligence в России 2009: системы бизнес-анализа 13 подробно рассмотренных платформ для бизнес-анализа, более 70 BI-проектов. Аналитики центра TAdviser объявили о завершении исследования универсальных платформ для бизнес-анализа (BI), представленных на российском рынке. В ходе подготовки отчета были рассмотрены все универсальные решения данного класса, доступные в России. Согласно полученным результатам, на российском рынке представлены BI-платформы 13 вендоров, 3 из которых - российские компании. Основной задачей подготовленного отчета являлся сбор максимально полной и достоверной информации о функциональных возможностях современных BI-систем, а также об опыте уже реализованных проектов в России. В ходе исследования собраны данные более чем о 70 проектах по созданию аналитических систем. Для анализа возможностей представленных на российском рынке BI-платформ использовались как открытые источники информации, к которым относятся новостные материалы, рекламные и технические материалы поставщиков, периодические публикации в прессе и обсуждения на тематических форумах, так и закрытые, в частности, внутренняя информация поставщиков BI-систем и собственные материалы исследователя.

2008. ФБ Консалт стал официальным партнером QlikTech, мирового лидера в области Business Intelligence

Компания ФБ Консалт подписала договор о партнерстве с компанией QlikTech, предлагающей передовую полнофункциональную платформу бизнес-аналитики (BI) QlikView. QlikView дает четкое видение эффективности работы, обеспечивая гибкость и высокую скорость реакции на изменения, тем самым, повышая общую прозрачность управления бизнесом. Это, в свою очередь, не только оптимизирует процессы и сокращает расходы организации, но также повышает качество обслуживания и обеспечивает неоспоримые конкурентные преимущества на рынке. Для амбициозных компаний, нацеленных на успешное и быстрое развитие, QlikView является незаменимым инструментом. QlikView является простым в использовании, быстрым и гибким аналитическим решением для повышения эффективности работы организации. Новая технология позволяет за очень короткий срок строить даже самые сложные модели для анализа, без особых усилий формировать по ним отчетность и поддерживать их в актуальном состоянии.

2007. Business Objects открыла SaaS сервис для бизнес-аналитики

Компания Business Objects запустила SaaS сервис Business Intelligence OnDemand, который позволит компаниям получить доступ к широкому спектру инструментов бизнес-анализа, входящих в состав пакетов Crystal Reports, Crystal Xcelsius и Web Intelligence по запросу. В распоряжение руководителей и аналитиков предоставляются настраиваемые отчеты, контрольные панели, мастер запросов и аналитические инструменты. Система Business Intelligence OnDemand базируется на популярном SaaS-решении crystalreports.com. Также выпущена отдельная версия Business Intelligence OnDemand, ориентиованная на пользователей решения Salesforce.com и предполагающая максимально тесное взаимодействие с указанной онлайновой CRM-системой.

2007. Business Objects приглашает тестировать средства Web 2.0

На протяжении последних нескольких месяцев компания Business Objects на своем сайте Business Objects Labs публикует прототипы средств бизнес-интеллекта, отвечающих концепциям Web 2.0, к тестированию которых она приглашает заказчиков. В Business Objects их называют BI 2.0; новинки пользуются принципами Mashups и полагаются на совместную деятельность через Web. Недавно компания опубликовала очередной прототип - BI Annotator, который предоставляет возможность объединения внешних потоков данных со структурированной информацией из корпоративного хранилища. Например, сельскохозяйственная компания может с его помощью сопоставить поток сводок температуры воздуха со своими внутренними данными по урожайности. Предполагается, что BI Annotator позволит учитывать больше "контекстной" информации, помогая принимать более информированные бизнес-решения. Еще один новый инструмент компании - BI Desktop, отображающий актуальную аналитическую информацию на "рабочем столе". Имеется также Business Objects Masher для объединения онлайн-сервисов и BI Coordinator, подключаемый модуль для Windows Live Messenger, позволяющий обмениваться аналитическими данными посредством IM-сервиса.

2007. Oracle покупает лидера BI-систем Hyperion

Американская компания Oracle достигла соглашения о приобретении Hyperion Solutions — одного из ведущих мировых поставщиков решений в области программного обеспечения систем эффективного управления. Сумма сделки, которая состоится после одобрения антимонопольных органов, составит $3,3 млрд. Глава Oracle Ларри Эллисон заявил, что приобретение Hyperion выводит его компанию в лидеры рынка систем управления предприятием. «Программное обеспечение Hyperion EPM и решения Business Intelligence (BI) от Oracle, включающие инструменты сбора, обработки и анализа информации наряду с аналитическими приложениями, составят превосходную систему эффективного управления, в которую войдет планирование, составление смет, консолидация, оперативная аналитика и система отчетов», — отметил Эллисон.

2007. Microsoft предоставила пользователям Microsoft Dynamics CRM превосходные средства бизнес-анализа

Корпорация Microsoft анонсировала продукт Microsoft Dynamics CRM Analytics Foundation. Указанное решение позволит клиентским организациям использовать BI-механизмы от Microsoft для решения широкого спектра задач, связанных с изучением взаимодействий с клиентами. В том числе пользователи Microsoft Dynamics CRM смогут заниматься исследованием агрегированных клиентских данных, проводить упреждающий анализ, составлять исчерпывающие отчеты и многое другое. Разработчики решения рассматривают бизнес-анализ как неотъемлемую часть повседневной деятельности корпоративных пользователей и предоставляют в распоряжение руководителей и рядовых сотрудникам все необходимые инструменты для принятия верных и обоснованных решений. Продукт тесно интегрируется с решениями Microsoft SQL Server 2005, Microsoft SharePoint, Microsoft Office Business Scorecard Manager и Microsoft Office Excel, а, кроме того, сможет взаимодействовать с платформой Microsoft PerformancePoint Server 2007, которая появится на рынке в этом году.

2003. Cognos Series: Business Intelligence в браузере

Система Cognos Series 7 V. 2 станет первой из модификаций программного продукта класса Business Intelligence, доступный через браузер. Web-интерфейс Cognos дает возможность пользоваться всеми теми же функциями, что и первые версии Windows-клиентов. Для работы с Web-интерфейсом не нужна даже загрузка каких-либо Java-приложений. Программный продукт легко интегрируется с другими системам оперативной аналитической обработки, включая SAP и IBM DB2.

www.clouderp.ru

Разница между Business Intelligence и Data Science

Модные словечки, востребованная терминология, не совсем понятные определения и совершенно незнакомые лексические единицы. Все вышеуказанное можно применить как к понятию «business intelligence», так и к словосочетанию «data science». Попробуем не только преодолеть трудности перевода, но и разобраться в том, чем разнятся «наука о данных» и «бизнес интеллект».

Business Intelligence: интеллект, разведка, осмысление, аналитика

Многие уверены, что термин «business intelligence» впервые появился на свет в 80-х гг. прошлого столетия, но это не совсем так. Дело в том, что первым этот термин использовал Ханс Питер Лун, исследователь из компании IBM, в далеком 1958 году. А в 1989-ом Говард Дреснер, который позже стал аналитиком в Gartner, дал определение «business intelligence» как тому, что описывает «концепции и методы для улучшения принятия бизнес-решений с использованием систем на основе бизнес-данных».

Business-Intelligence

Давайте прислушаемся к другим экспертам. Так, Джонатан Ву, менеджер компании Netgear, определяет BI как процесс сбора многоаспектной информации о предмете, который исследуется. А вот какую трактовку предложил Институт хранилищ данных (The Data Warehousing Institute): Business intelligence – это процесс превращения данных в знания, а знаний в бизнес-действия для получения выгоды.

BI можно рассматривать не только как процесс, но и как результат процесса получения знаний. Однако если компилировать все определения, которые «дрейфуют» на рынке, можно утверждать, что business intelligence в самом широком смысле этого понятия – это процесс превращения полученных данных в знания о бизнесе, которые используются для принятия улучшенных решений. Кроме того, это еще и информационные технологии сбора данных и их консолидации. И, наконец, BI представляет собой знания о бизнесе, которые добываются путем проведения углубленного анализа данных. Если говорить коротко, то business intelligence – это технологии, анализ и знания.

Data Science: наука о хаосе, приведенном в порядок

С недавних пор наука о данных рассматривается не только как академическая дисциплина, но и как практическая межотраслевая сфера деятельности. Сам термин был предложен Уильямом Кливлендом, профессором университета Пердью, который считается одним из самых больших авторитетов в области статистики, машинного обучения и визуализации данных.

data_science

Согласно определению международного совета CODATA (International Council for Science: Committee on Data for Science and Technology), наука о данных представляет собой дисциплину, которая объединяет различные направления статистики, data mining и машинное обучение. Однако наиболее популярное определение дано в статье «Что такое Data Science?» Майка Лукидиса, редактора O'Reilly Media и автора книг об операционных системах, компьютерной архитектуре и программировании. Стоит отметить, что данная трактовка на сегодняшний день является основополагающей. Data Science – это обобщенное название технологий, которые предназначены для производства данных как продукта. Если сравнивать науку о данных с традиционной статистикой, то на первый взгляд может показаться, что между ними нет никаких отличий. Однако Data Science характеризуется комплексным подходом, а data-ученые не изучают данные, а используют их.

Таким образом, мы приходим к выводу, что Data Science изучает проблемы анализа, обработки и использования данных. Это такое фантастическое «ассорти», от которого голова идет кругом: здесь вам и статистика, и интеллектуальный анализ данных, и искусственный интеллект, обрабатывающий большие объемы data, и методы проектирования баз данных, и многое другое.

Ничто не ново под… data-небосводом

Облачные вычисления и другие технические достижения заставили компании сосредоточиться больше на будущем, а не анализировать отчеты на основании данных прошлого. Чтобы получить конкурентные преимущества, компании начали объединять и преобразовывать данные, которые являются частью реальной науки о данных.

В то же время они практикуют Business Intelligence, создавая графики, отчеты и таблицы на базе полученных данных. И хотя между Data Science и Business Intelligence есть большие различия, они в равной степени важны и дополняют друг друга.

Fotolia_48679747_L

Для того чтобы практиковать BI и Data Science, многие компании нанимают специалистов, которые совмещают сразу две должности – BI-аналитиков и дата-сайентистов. Тем не менее, именно здесь и возникает путаница из-за непонимания того, что эти роли требуют различных экспертных знаний.

Несправедливо ожидать, что BI-аналитик может сделать точные бизнес-прогнозы. А это может стать причиной катастрофических последствий для любой компании. Однако, изучив главные различия между BI и наукой о данных, можно научиться подбирать подходящих кандидатов для выполнения определенных задач, которые намерен решить ваш бизнес.

Сфера интересов

С одной стороны, традиционный подход Business Intelligence подразумевает создание инструментальных панелей для отображения исторических данных в соответствии с фиксированным набором ключевых показателей эффективности. Отсюда делаем вывод, что BI больше полагается на отчеты, современные тренды и ключевые показатели эффективности (KPI).

business_intelligence

С другой стороны, наука о данных больше фокусируется на предсказании того, что в конечном итоге может случиться в будущем. Таким образом, дата-сайентисты больше сосредоточены на изучении закономерностей и различных моделей, а также на нахождении корреляций для бизнес-прогнозов.

data_analysis_shutterstock_138550073-1024x1024-1024x1024

Например, компаниям, занимающимся корпоративным тренингом, нужно предсказывать растущую потребность в новых видах обучения, основываясь на существующих шаблонах и требованиях корпоративных компаний.

Анализ и качество данных

BI требует от аналитиков умения сосредотачиваться не только на настоящем и будущем, но и заглядывать в прошлое – то есть активно использовать исторические данные. Поэтому анализ BI-аналитиков является в большей степени ретроспективным. Фокус Business Intelligence – это абсолютно точные данные, основанные на том, что на самом деле произошло в прошлом.

Business-Intelligence64566

Например, ежеквартальные результаты компании формируются из реальных данных о ведении бизнеса на протяжении последних трех месяцев. Ошибки в этом случае попросту невозможны, потому что отчетность носит описательный характер и не может быть субъективной.

Что касается науки о данных, то дата-сайентисты должны использовать предиктивную и директивную аналитику. Они обязаны довольно точно предсказывать то, что должно произойти в будущем, используя вероятности и уровни уверенности.

maxresdefault

То, как компания будет выполнять необходимые действия на основе предиктивного анализа и прогнозов на будущее, не может базироваться на простых догадках. Конечно, наука о данных не может быть точной на 100%, но она должна быть «достаточно хороша» для бизнеса, чтобы принимать своевременные решения и действия, а также обеспечивать необходимые результаты.

Идеальный пример науки о данных в действии – оценка прибыли компании в следующем квартале.

Источники и преобразование данных

Business Intelligence – это заблаговременное планирование и подготовка к использованию правильной комбинации источников данных для их преобразования. Чтобы получить соответствующие инсайты о клиентах, деловых операциях и продуктах, Data Science в состоянии на лету преобразовывать данные, используя те источники информации, которые доступны по требованию.

meraevents.com-4

Потребность в смягчении

BI-аналитики не должны смягчать любые неопределенности, окружающие исторические данные, так как они основаны на реальных ситуациях. Такие данные точны и не предполагают каких-либо вероятностей.

Machine-Learning

А вот в случае науки о данных существует необходимость смягчения разного рода неопределенностей. Для этого дата-сайентисты используют различные аналитики и методы визуализации, которые помогают выявить неопределенности в данных. В конечном счете, они используют соответствующие методы преобразования данных для их конвертирования в работоспособный формат, который можно легко объединить с другими источниками данных.

Процесс

При помощи BI процесс преобразования данных не может быть мгновенным – это довольно медленная процедура, включающая предварительное планирование и сравнительный анализ. Этот процесс повторяется ежемесячно, ежеквартально или ежегодно, потому такую аналитику нельзя назвать «многоразовой».

data-science-illustration-­Feature_1290x688_MS

Дата-сайентисты могут мгновенно преобразовывать данные с помощью прогнозных приложений, которые умеют предсказывать будущее на основе определенных комбинаций данных. Это довольно быстрый процесс, который во многом состоит из экспериментирования.

bigstock-Strategic-Journey-43526110

Нужны ли вам отчеты за последние пять лет, или вас интересуют будущие бизнес-модели – BI и наука о данных необходимы для любого бизнеса. А имея представление о том, чем отличаются друг от друга Business intelligence и Data Science, вы сможете принимать более обоснованные решения, которые обязательно приведут к успеху в бизнесе.

При написании статьи были использованы материалы SmartDataCollective, Allen Communication Learning Services, Datafloq

rtbinsight.ru

Современные Business Intelligence (BI) системы на примере IBM Cognos BI / Хабр

image

В современном мире существуют определенные классы программного обеспечения, которое ориентированно в основном на корпоративный сегмент (крупный и средний бизнес) и соответственно не имеет широкого распространения. Но некоторые программные комплексы имеют достаточно интересные функции, которые можно применить не только в сфере мелкого бизнеса, но и в качестве персонального инструмента. Вот об одном из таких программных комплексов и пойдет речь в данной статье.

Примечание

Я являюсь техническим специалистом, соответственно статья имеет более технический уклон. Если есть желание почитать информацию по продукту, ориентированную на бизнес пользователей, то вам на офсайт IBM.

Основная цель этой статьи, показать вам как сделать свой первый «Hello World» (по аналогии с программированием) в IBM Cognos BI.

Также хочу отметить, что я имею большой опыт написания пошаговых инструкций со скриншотами каждого шага. Но эта статья не будет очередной пошаговой инструкцией, здесь я хочу показать концепцию работы с системой, а не сделать еще один мануал.

Что такое BI?

Итак, что же такое BI система? Если в трех словах, то это продвинутая система отчетности. Что-бы было более понятно, ниже перечислю список основных функций, которыми располагают современные системы класса BI:
  • возможность подключения к различным источникам данных (от файла Excel до универсального ODBC подключения)
  • возможность построения как простых отчетов (типа график или таблица), так и сложных параметризированных отчетов с комбинированной структурой и ссылочными связями (Drill-Trough, Drill-Up/Drill-Down)
  • возможность прозрачной работы с разными источниками данных (например, Excel и SQL Server) с полноценной обработкой связей между ними
  • возможность интерактивной работы с данными (формирование отчетов «на лету»)
  • возможность представления реляционных данных как многомерные
  • возможность распределения прав доступа используя как внутренние источники аутентификации, так и внешние (NTLM, LDAP и т. д.)
  • возможность запуска формирования отчетов как вручную, так и автоматически по расписанию
  • возможность автоматической рассылки сформированных отчетов
  • возможность построения отчетов в различных форматах (Excel, HTML, PDF и т. д.)
Говоря простым русским языком, BI система – это такая программа, которая предоставляет пользователю удобные инструменты анализа фактически любых данных (будь то файл Excel либо промышленное хранилище данных).

Возможность применения BI системы в качестве персонального инструмента

Сразу становится вопрос, как можно использовать эту систему в качестве персонального инструмента? Отвечу по личному примеру, я использую IBM Cognos BI в качестве инструмента по анализу статистики в своих проектах и инструмента по анализу статистики домашней бухгалтерии.

Тут конечно можно возразить, что-то в духе «я и обычным SQL запросами отлично анализирую статистику» или «встроенных функций Excel вполне достаточно чтобы проанализировать всю домашнюю бухгалтерию», но «все познается в сравнении». Как показывает практика, гораздо проще просто натаскать мышкой нужные элементы данных и получить результат в готовом виде, чем возится с написанием SQL запросов или перенастраиванием функций Excel.

Опять-таки, все написанное это лично мое мнение, с которым вы не обязаны соглашаться.

Архитектура IBM Cognos BI

Архитектура системы относительно несложная (как для системы корпоративного класса). Итак, ключевым элементом системы является IBM Cognos BI сервер (см. схему ниже), который работает с источниками данных, используя созданное пользователем описание (именуемое метаданными). Далее, посредством Web доступа, IBM Cognos BI сервер предоставляет доступ ко всем основным функциям системы.Концептуальная архитектура комплекса IBM Cognos BI (схема получилась весьма громоздкой)image

Этапы работы с системой

Чтобы сделать свой первый отчет необходимо выполнить несколько основных этапов:
  1. Создать подключение к источнику данных
  2. Сформировать описание источника данных, т. е. создать метаданные
  3. Создать и опубликовать пакет метаданных на IBM Cognos BI сервере
  4. Создать отчет

Структура тестового источника данных

Перед тем как приступить к реализации вышеописанных этапов, я хочу сказать пару слов об тестовом источнике данных. С одной стороны, структура тестового источника данных относительно простая (как для промышленного хранилища данных) с другой стороны она несколько сложнее чем простой лист Excel. Все данные в источнике являются синтетическими (сгенерированы алгоритмами на основе случайных чисел), из-за этого агрегатные показатели выглядят весьма ровно.

image

Как видно на схеме выше, в тестовой базе данных содержится 3 иерархических измерения: «Группа товара -> Товар», «Континент -> Страна -> Город -> Торговая точка», «Год -> Полугодие -> Квартал -> Месяц -> Дата»; 2 плоских (одномерных) измерения: «Кассир», «Региональный руководитель»; и 2 таблицы фактов: «Продажи», «План продаж». Причем измерение «Кассир» расположено в одной из таблиц фактов в денормализованном виде, а измерение «Региональный руководитель» привязано к уровню «Страна» измерения «Торговая точка» связью «многие ко многим» (подразумевается, что один руководитель может управлять разными странами).

Подключение к источнику данных

В IBM Cognos BI все необходимые параметры для подключения к источникам данных хранятся в специальных объектах системы, которые так и называются «Data Source Connections». Чтобы создать новое подключение, необходимо выполнить несколько простых шагов: зайти на портал IBM Cognos BI, перейти в раздел «Администрирование» («Administration»), открыть вкладку «Конфигурация» («Configuration»), выбрать подраздел «Подключения источника данных» («Data Source Connections») и нажать кнопку «Новый источник данных» («New Data Source») в панели инструментов. Далее появится серия диалоговых окон, в которых будет необходимо задать несколько параметров, таких как название подключения, тип соединения, сервер, логин, пароль и т. д.

Разработка метаданных

Разработка метаданных, это один из самых сложных и ответственных моментов. От качества метаданных зависит, как работоспособность системы (скорость формирования отчетов, корректность сформированных результатов и т. д.) так и удобство разработки отчетов. Но несмотря на вышесказанное, сложность разработки метаданных прямо пропорциональна сложности источника данных. Например, чтобы построить реляционное описание нашего тестового источника данных, достаточно запустить мастер построения метаданных, несколько раз кликнуть кнопку «Next», и метаданные готовы.

Итак, как я уже писал ранее, метаданные – это описание источника данных. В IBM Cognos BI. Фундаментом метаданных являются объекты «Query Subject» и связи между ними. Объект «Query Subject» это синоним «View» из реляционных СУБД. Т. е. в основе «Query Subject» стоит запрос к СУБД, определяющий структуру объекта источника, а связи между «Query Subject» это описание логического взаимодействия между этими запросами.

Для создания метаданных в IBM Cognos BI используется отдельное приложение IBM Cognos Framework Manager (единственное не Web приложение в комплексе IBM Cognos BI). После запуска Framework Manager будет предложено создать новый проект (необходимо будет ввести наименование проекта и его расположение в локальной файловой системе).

Следует понимать, что проект Framework Manager (также именуемый как модель Framework Manager) это набор локальных файлов, с которыми работает локальная программа, а пакет метаданных это результат, который располагается на IBM Cognos BI сервере (если проводить аналогию с программированием, то проект – это исходный код, а пакет – это скомпилированное приложение). На базе одного проекта Framework Manager можно создать несколько наборов пакетов.

После того как проект Framework Manager создан, лучше всего начать работу с запуска мастера импорта метаданных (Action -> Run Metadata Wizard …). Мастер импорта предложит выбрать существующий источник данных или создать новый и позволит выбрать необходимые объекты для импорта. В простейшем случае (например, когда источником данных является файл Excel, который в 99,9% случаев содержит данные в денормализованном виде) нужно будет полям объекта «Query Subject» задать правильный тип использования (атрибут «Usage») и на этом работу с моделью Framework Manager можно заканчивать и приступать к формированию и публикации пакета метаданных. В более сложном варианте (как в нашем тестовом примере), необходимо будет проверить правильность импортированных связей между объектами «Query Subject», исправить некорректные и добавить недостающие. В более профессиональных вариантах есть возможность создавать вычисляемые поля, менять структуру «Query Subject», сформировать многомерное (multidimensional) представление, определить алгоритмы безопасности и т.д.

image

Создание и публикация пакета метаданных

После того как метаданные созданы, необходимо сформировать метапакет и опубликовать его на IBM Cognos BI сервере. Как я упоминал ранее, метапакет – это некоторое подмножество метаданных, которое публикуется на сервере и с которым работают все Web приложения комплекса IBM Cognos BI. Настройки метапакета позволяют скрыть или не публиковать некоторые объекты метаданных. Например, в тестовых метаданных есть некоторый «Query Subject» [Country_RegDir], который влияет на логику обработки данных источника (является связующим звеном между страной и региональным директором), но не представляет ценности при разработке отчетов, вот такой объект метаданных имеет смысл скрыть на уровне пакета. Или, например, поля с идентификаторами, их тоже имеет смысл скрыть от пользователей метапакетов.

Чтобы создать метапакет необходимо в Framework Manager, в разделе «Packages» вызвать контекстное меню и выбрать пункт «Create -> Package», после чего появится мастер создания метапакета. После того как метапакет будет создан, система сразу предложит его опубликовать на сервере. Начинающему пользователю можно сильно не вникать опции мастера публикации пакетов (просто нажимать кнопку Next и Publish). Единственно что, на последней вкладке (где будет не кнопка Next, а кнопка Publish) будет птичка «Verify package before publish», она определяет проверять ли метапакет на наличие логических неоднозначностей перед публикацией и отображает список этих неоднозначностей, если они буду найдены. Настоятельно рекомендую никогда не пропускать этот шаг и исправлять все найденные неоднозначности перед публикацией.

image

Создание отчетов (анализ данных)

Вот мы потихоньку и подобрались к самому интересному и регулярному процессу – это создание отчетов. Так сложилось что инструменты для создания регулярных отчетов и инструменты для быстрого анализа данных в IBM Cognos BI одни и те же (несмотря на то что в одних удобнее проводить быстрый анализ, а в других удобнее формировать регулярные отчеты, все они позволяют сохранять свои результаты в виде отчетов).

Лично я предпочитаю для всех BI задач использовать инструмент IBM Cognos Report Studio. Это наиболее универсальный инструмент, позволяющий строить отчеты фактически любой сложности и в тоже время предоставляет относительно удобные инструменты для быстрого анализа данных.

Предположим, что нам необходимо создать быстрый отчет, содержащий факт продаж в разрезе страны, товарной группы и периодичностью в квартал. Этот достаточно простой отчет можно сделать, выполнив следующие шаги:

  1. запустить веб приложение IBM Cognos Report Studio
  2. в окне приветствия нажать кнопку «создать» («create»)
  3. в списке базовых шаблонов выбрать «перекрестная таблица» («corsstab»)
  4. разместить элементы данных согласно схеме, представленной ниже
  5. запустить отчет на выполнение

image

После запуска отчета на выполнение, получится примерно такой результат.

image

Глядя на получившийся отчет можно смело сказать, что оформлен он откровенно плохо, числа не отформатированы, экономический смысл откровенно сомнителен и т. д. Но все эти недостатки оформления можно убрать путем задания свойств соответствующих элементов настроек, а чтобы экономический смысл был более интересен, можно, например, сделать план/факт анализ.

Например, чтобы сделать отчет, показанный ниже (на готовых метаданных) я, как специалист с опытом, потратил где-то 20-30 минут.

image

А чтобы его полностью переоформить в темную цветовую схему, я потратил где-то еще 10 минут.

image

Заключение

Я надеюсь, что в этой статье читатель смог получить общие сведения о BI системах и принципе их работы. Конечно в рамках небольшой статьи невозможно рассмотреть относительно подробно ни один из затронутых аспектов (например, о том, как правильно сформировать метаданные, можно написать целую книгу), но я думаю, что если вы решите попробовать, то эта статья подскажет с чего начать и какого результата ожидать.

Также я совсем не затронул некоторые интересные механизмы и функции (например, механизм представления реляционного источника данных как многомерного), но это из-за того, что количество необходимого материала (минимум теории и минимум практики) потянет на отдельную статью.

Немного о лицензиях

Если вы решите купить отдельно систему IBM Cognos BI для персонального пользования или для небольшой фирмы, то наверняка цены вас неприятно удивят, но у IBM есть специальная комплексная система IBM Cognos Express, которая рассчитана на небольшие организации, содержит в себе несколько продуктов (включая BI) и стоит значительно дешевле.

habr.com

Классификация продуктов business intelligence

Главная часть BI-инструментов делится на корпоративные BI-наборы и BI-платформы. Средства генерации запросов и отчетов в большой степени поглощаются и замещаются корпоративными BI-наборами. Многомерные OLAP-механизмы или серверы, а также реляционные OLAP-механизмы являются BI-инструментами и инфраструктурой для BI-платформ.

Большинство BI-инструментов применяются конечными пользователями для доступа, анализа и генерации отчетов по данным, которые чаще всего располагаются в хранилище, витринах данных или оперативных складах данных. Разработчики приложений используют BI-платформы для создания и внедрения BI-приложений, которые не рассматриваются как BI-инструменты. Примером BI-приложения является информационная система руководителя EIS.

Инструменты генерации запросов и отчетов

Генераторы запросов и отчетов — типично «настольные» инструменты, предоставляющие пользователям доступ к базам данных, выполняющие некоторый анализ и формирующие отчеты. Запросы могут быть как незапланированными (ad hoc), так и иметь регламентный характер. Имеются системы генерации отчетов (как правило, серверные), которые поддерживают регламентные запросы и отчеты. Настольные генераторы запросов и отчетов расширены также некоторыми облегченными возможностями OLAP. Развитые инструменты этой категории объединяют в себе возможности пакетной генерации регламентных отчетов и настольных генераторов запросов, рассылки отчетов и их оперативного обновления, образуя так называемую корпоративную отчетность (corporate reporting). В ее арсенал входят сервер отчетов, средства рассылки, публикации отчетов на Web, механизм извещения о событиях или отклонениях (alerts). Характерные представители — Crystal Reports, Cognos Impromptu и Actuate e.Reporting Suite.

OLAP или развитые аналитические инструменты

Инструменты OLAP являются аналитическими инструментами, которые первоначально были основаны на многомерных базах данных (МБД) .МБД — это базы данных, сконструированные специально для поддержки анализа количественных данных с множеством измерений, содержат данные в «чисто» многомерной форме. Большинство приложений включают измерение времени, другие измерения могут касаться географии, организационных единиц, клиентов, продуктов и др. OLAP позволяет организовать измерения в виде иерархии. Данные представлены в виде гиперкубов (кубов) — логических и физических моделей показателей, коллективно использующих измерения, а также иерархии в этих измерениях. Некоторые данные предварительно агрегированы в БД, другие рассчитываются «на лету».

Средства OLAP позволяют исследовать данные по различным измерениям . Пользователи могут выбрать, какие показатели анализировать, какие измерения и как отображать в кросс-таблице, обменять строки и столбцы «pivoting», затем сделать срезы и вырезки («slice&dice»), чтобы сконцентрироваться на определенной комбинации размерностей. Можно изменять детальность данных, двигаясь по уровням с помощью детализации и укрупнения «drill down/ roll up», а также кросс-детализации «drill across» через другие измерения.

Для поддержки МБД используются OLAP-серверы , оптимизированные для многомерного анализа и поставляемые с аналитическими возможностями. Они обеспечивают хорошую производительность, но обычно требуют много времени для загрузки и расширения МБД. Поставляются с возможностью «reach-through», позволяя перейти от агрегатов к деталям в реляционных БД. Классический OLAP-сервер — Hyperion Essbase Server.

Сегодня реляционные СУБД применяются для эмуляции МБД и поддерживают многомерный анализ. OLAP для реляционных БД (ROLAP) имеет преимущество по масштабируемости и гибкости, но проигрывает по производительности многомерному OLAP (MOLAP), хотя существуют методы повышения производительности, наподобие схемы «звезда». Несмотря на то что МБД являются по-прежнему наиболее подходящими для оперативной аналитической обработки, сейчас эту возможность встраивают в реляционные СУБД или расширяют их (например, MS Analysis Services или Oracle  OLAP Services — это не то же самое, что ROLAP).

Также существует гибридная оперативная аналитическая обработка данных (HOLAP) для гибридных продуктов, которые могут хранить многомерные данные естественным образом, а также в реляционном представлении. Доступ к МБД осуществляется с помощью API для генерации многомерных запросов, тогда как к реляционным БД доступ производится посредством запросов на SQL. Примером ROLAP-сервера является Microstrategy7i Server.

Настольные OLAP-инструменты (например, BusinessObjects Explorer, Cognos PowerPlay, MS Data Analyzer), встроенные сейчас в EBIS, облегчают конечным пользователям просмотр и манипулирование многомерными данными, которые могут поступать из серверных ресурсов данных ROLAP или MOLAP. Некоторые из этих продуктов имеют возможность загружать кубы, так что они могут работать автономно. Как часть EBIS эти настольные инструменты оснащены возможностями серверной обработки, которые выходят за пределы их традиционных возможностей, но не конкурируют с MOLAP-инструментами. Настольные инструменты по сравнению с MOLAP-средствами имеют небольшую производительность и аналитическую мощь. Нередко обеспечивается интерфейс через Excel, например, MS Eхcel2000/OLAP PTS, BusinessQuery for Excel. Практически все OLAP-инструменты имеют Web-расширения (Business Objects WebIntelligence к примеру), для некоторых они являются базовыми.

Корпоративные BI-наборы

EBIS — естественный путь для предоставления BI-инструментов, которые ранее поставлялись в виде разрозненных продуктов. Эти наборы интегрируются в наборы инструментов генерации запросов, отчетов и OLAP. Корпоративные BI-наборы должны иметь масштабируемость и распространяться не только на внутренних пользователей, но и на ключевых заказчиков, поставщиков и др. Продукты BI-наборов должны помогать администраторам при внедрении и управлении BI без добавления новых ресурсов. Из-за тесного родства Web и корпоративных BI-наборов некоторые поставщики описывают свои BI-наборы как BI-порталы. Эти портальные предложения обеспечивают подмножество возможностей EBIS с помощью Web-браузера, однако поставщики постоянно увеличивают их функциональность, приближая ее к возможностям инструментов для «толстых» клиентов. Типичные EBIS поставляют Business Objects и Cognos.

BI-платформы

BI-платформы предлагают наборы инструментов для создания, внедрения, поддержки и сопровождения BI-приложений. Имеются насыщенные данными приложения с «заказными» интерфейсами конечного пользователя, организованные вокруг специфических бизнес-проблем, с целевым анализом и моделями. BI-платформы, хотя и не так быстро растут и широко используются как EBIS, являются важным сегментом благодаря ожидаемому и уже происходящему росту BI-приложений. Стараниями поставщиков реляционных СУБД, создающих OLAP-расширения своих СУБД, многие поставщики платформ, которые предоставили многомерные СУБД для OLAP, чтобы выжить были вынуждены мигрировать в область BI-приложений. Семейства продуктов СУБД, обеспечивающие возможности BI, действительно подталкивают рост рынка BI-платформ. Отчасти это происходит благодаря большей активности ряда поставщиков СУБД.

Рассматривая различные инструменты, видим, что EBIS являются высоко функциональными средствами, но они не имеют такого большого значения, как BI-платформы или заказные BI-приложения. Зато BI-платформы обычно не так функционально полны, как корпоративные BI-наборы. При выборе BI-платформ нужно учитывать следующие характеристики: модульность, распределенную архитектуру, поддержку стандартов XML, OLE DB for OLAP, LDAP, CORBA, COM/DCOM и обеспечение работы в Web. Они должны также обеспечивать функциональность, специфическую для бизнес-интеллекта, а именно: доступ к БД (SQL), манипулирование многомерными данными, функции моделирования, статистический анализ и деловую графику. Эту категорию продуктов представляют фирмы Microsoft, SAS Institute, Oracle, SAP и другие.

BI-приложения

В приложения бизнес-интеллекта часто встроены BI-инструменты (OLAP, генераторы запросов и отчетов, средства моделирования, статистического анализа, визуализации и data mining). Многие BI-приложения извлекают данные из ERP-приложений. BI-приложения обычно ориентированы на конкретную функцию организации или задачу, такие как анализ и прогноз продаж, финансовое бюджетирование, прогнозирование, анализ рисков, анализ тенденций, «churn analysis» в телекоммуникациях и т.п. Они могут применяться и более широко как в случае приложений управления эффективностью предприятия (enterprise perfomance management) или системы сбалансированных показателей (balanced scorecard).

Разведка данных

Разведка данных (data mining) представляет собой процесс обнаружения корреляции, тенденций, шаблонов, связей и категорий . Она выполняется путем тщательного исследования данных с использованием технологий распознавания шаблонов, а также статистических и математических методов. При разведке данных многократно выполняются различные операции и преобразования над сырыми данными (отбор признаков, стратификация, кластеризация, визуализация и регрессия), которые предназначены:

1) для нахождения представлений, которые являются интуитивно понятными для людей, которые, в свою очередь, лучше понимают бизнес-процессы, лежащие в основе их деятельности;

2) для нахождения моделей, которые могут предсказать результат или значение определенных ситуаций, используя исторические или субъективные данные.

В отличие от использования OLAP разведка данных в значительно меньшей степени направляется пользователем, вместо этого полагается на специализированные алгоритмы, которые устанавливают соотношение информации и помогают распознать важные (и ранее неизвестные) тенденции, свободные от предвзятости и предположений пользователя.

Другие методы и средства BI

Кроме перечисленных инструментов, в состав BI могут входить следующие средства анализа : пакеты статистического анализа и анализ временных рядов и оценки рисков; средства моделирования; пакеты для нейронных сетей; средства нечеткой логики и экспертные системы. Дополнительно нужно отметить средства для графического оформления результатов: средства деловой и научно-технической графики; «приборные доски», средства аналитической картографии и топологических карт; средства визуализации многомерных данных.

См.также

Определение Business Intelligence

Типовые блоки современных BI-систем

Преимущества использования BI-системы

Рекомендации по выбору BI

Внедрение BI. Типичные ошибки

Business Intelligence, BI (мировой рынок)

Business Intelligence (рынок России)

www.tadviser.ru

Business Intelligence. Системы бизнес-анализа: базовые понятия и решения

Business Intelligence. Системы бизнес-анализа: базовые понятия и решения

Перевод статьи Business Intelligence Definition and Solutions

Что такое бизнес-аналитика?

Бизнес-аналитика, или BI, — это общий термин, подразумевающий под собой разнообразные программные продукты и приложения, созданные для анализа первичных данных организации.

Бизнес-анализ как деятельность состоит из нескольких связанных между собой процессов:

  • интеллектуальный анализ данных (data mining),
  • аналитическую обработку в реальном времени (online analytical processing),
  • получение информации из баз данных (querying),
  • составление отчетов (reporting).

Компании используют BI для принятия обоснованных решений, сокращения издержек и поиска новых перспектив для бизнеса. BI — это нечто большее, чем обычная корпоративная отчетность или некий набор инструментов для получения информации из учетных систем предприятия. IT-директора используют бизнес аналитику, чтобы выявить неэффективные бизнес-процессы, которые «созрели» для перестройки.

Используя современные инструменты бизнес-анализа, бизнесмены могут начать анализировать данные самостоятельно и не ждать, пока IT-департамент сформирует сложные и запутанные отчеты. Такая демократизация доступа к информации дает пользователям возможность подкреплять реальными цифрами свои бизнес-решения, которые в обратном случае были бы основаны на интуиции и случайностях.

Несмотря на то что системы BI достаточно перспективны, их внедрение может быть затруднено техническими и «культурными» проблемами. Менеджерам необходимо обеспечивать четкие и согласованные данные для BI приложений, чтобы пользователи могли им доверять.

Какие компании используют BI-системы?

Ресторанные сети (например, Hardee’s, Wendy’s, Ruby Tuesday и T.G.I. Friday’s) активно используют системы бизнес-аналитики. BI крайне полезен им для принятия стратегически важных решений. Какие новые продукты добавить в меню, какие блюда исключить, какие неэффективно работающие точки закрыть и т.д. Они также используют BI для таких тактических вопросов, как пересмотр договоров с поставщиками продуктов и выявление путей совершенствования неэффективных процессов. Поскольку ресторанные сети сильно ориентированы на свои внутренние бизнес-процессы и поскольку BI занимает в контроле этих процессов центральное место, помогая управлять предприятиями, рестораны, среди всех отраслей, входят в элитную группу компаний, которые получают реальную выгоду от этих систем.

Бизнес-аналитика является одним из ключевых компонентов BI. Этот компонент важен для достижения успеха компании из любой отрасли.

В секторе розничной торговли Wal-Mart широко применяет анализ данных и кластерный анализ для того, чтобы сохранять свое доминирующее положение в секторе. Harrah’s изменил основы своей политики конкурентной борьбы в игральном бизнесе, сделав упор на анализ лояльности клиентов и уровня обслуживания, вместо поддержания мега-казино. Amazon и Yahoo — это не просто крупные веб-проекты, они активно используют бизнес-аналитику и общий подход «протестируй и пойми» для налаживания своих бизнес-процессов. Capital One проводит более 30 000 экспериментов ежегодно для выявления целевой аудитории и оценки предложений по кредитным картам.

С чего или с кого должно начаться внедрение BI?

Общая вовлеченность сотрудников жизненно необходима для успеха BI-проектов, поскольку каждый, кто задействован в процессе, должен обладать полным доступом к информации, чтобы иметь возможность изменить способы и методы своей работы. BI-проекты должны начинаться с высшего руководства, а следующей группой пользователей должны быть менеджеры по продажам. Их основная обязанность — наращивать продажи, и заработная плата часто зависит от того, насколько хорошо они это делают. Поэтому они гораздо быстрее воспримут любой инструмент, способный помочь им в работе, при условии, что этот инструмент легко использовать и что они доверяют получаемой с его помощью информации.

Вы можете заказать свой пилотный проект на платформе для бизнес-анализа. Подробнее >>

Используя BI-системы, сотрудники корректируют работу над индивидуальными и групповыми задачами, что ведет к более эффективной работе команд продавцов. Когда руководители отделов продаж видят существенную разницу показателей нескольких отделов, они стараются довести «отстающие» отделы до того уровня, на котором работают «лидирующие».

Внедрив бизнес-аналитику в отделах продаж, можно продолжать внедрение уже в других департаментах организации. Положительный опыт продавцов будет способствовать переходу на новые технологии других сотрудников.

Как внедрить BI-систему?

Перед внедрением BI-системы, компаниям следует проанализировать механизмы принятия управленческих решений и понять, какая информация необходима руководителям для более обоснованного и оперативного принятия этих решений. Также желательно проанализировать, в каком виде руководители предпочитают получать информацию (в качестве отчетов, графиков, онлайн, в бумажной форме). Уточнение данных процессов покажет, какую информацию компании необходимо получить, анализировать и консолидировать в своих BI-системах.

Качественные BI-системы должны предоставлять пользователям контекст. Недостаточно просто составлять отчеты о том, какими были продажи вчера и какими — год назад в этот же день. Система должна давать возможность понять, какие факторы привели именно к такому значению объема продаж в один день и другому — в тот же день год назад.

Подобно многим IT проектам, внедрение BI не окупится, если пользователи будут чувствовать «угрозу» или скептически относиться к этой технологии и в результате откажутся от ее использования. BI, будучи внедренной в «стратегических» целях, должна, по идее, фундаментальным образом изменить функционирование компании и процесс принятия решений, поэтому руководителям IT-департаментов необходимо с особым вниманием подходить к мнениям и реакциям пользователей.

7 этапов запуска BI-систем

  1. Убедитесь, что ваши данные корректны (достоверны и пригодны для анализа).
  2. Проведите полноценное обучение пользователей.
  3. Внедряйте продукт как можно более оперативно, привыкая пользоваться им уже по ходу внедрения. Не стоит тратить огромное количество времени на разработку «идеальных» отчетов, поскольку отчеты можно будет добавить по мере по мере развития системы и потребности пользователей. Составляйте отчеты, которые быстро обеспечат максимальную пользу (потребность пользователей в данных отчетах максимальна), а затем корректируйте их.
  4. Придерживайтесь интегративного подхода к построению хранилища данных. Убедитесь, что вы не «запираете» себя в неработающей в длительной перспективе стратегии обработки данных.
  5. Перед тем как начать, четко оцените ROI. Определите конкретные преимущества, которые намереваетесь получить, и затем проверяйте их соответствие действительным результатам каждый квартал или каждые полгода.
  6. Сфокусируйтесь на целях вашего бизнеса.
  7. Не покупайте программное обеспечение для аналитики, потому что вы думаете, что вам это нужно. Внедряйте BI с мыслями, что среди ваших данных существуют показатели, которые необходимо получить. При этом, важно иметь хотя бы примерное представление о том, где конкретно они могут быть.

Какие могут возникнуть проблемы?

Крупное препятствие на пути к успеху BI-систем — сопротивление пользователей. Среди прочих возможных проблем — необходимость «просеивать» большие объемы нерелевантной информации, а также данные неудовлетворительного качества.

Ключ к получению значимых результатов от работы BI-систем — это стандартизированные данные. Данные являются фундаментальным компонентом любой BI системы. Компаниям необходимо привести свои хранилища данных в строгий порядок прежде, чем они смогут начать извлекать необходимую информацию и доверять полученным результатам. Без стандартизации данных есть риск получать некорректные результаты.

Еще одной проблемой может стать некорректное понимание роли аналитической системы. BI- инструменты стали более гибкими и удобными для пользователей, однако основная их роль по-прежнему — составление отчетов. Не стоит ждать от них автоматизированного управления бизнес-процессами. Впрочем, определенные изменения в этом направлении все же намечаются.

Третьим препятствием при трансформации бизнес-процессов с использованием BI системы является недостаточное понимание компаниями собственных бизнес-процессов. Как следствие, компании просто не понимают, как можно эти процессы улучшить. Если процесс не оказывает прямого влияния на прибыль или компания не собирается стандартизировать процессы во всех своих подразделениях, внедрение BI системы может оказаться неэффективным. Компаниям необходимо понимать все виды деятельности и все функции, которые составляют отдельный бизнес-процесс. Также важно знать, как передается информация и данные через несколько разных процессов, и как данные передаются между бизнес-пользователями, и то, как люди используют эти данные для осуществления своих задач в рамках конкретного процесса. Если стоит цель оптимизировать работу сотрудников, все это необходимо понять еще перед тем, как запустить BI-проект.

Некоторые преимущества от использования BI-решений

Большое количество BI-приложений помогло компаниям с лихвой отбить вложенные средства. Системы бизнес-аналитики используются для изучения способов сокращения издержек, выявления новых возможностей для развития бизнеса, представления ERP-данных в наглядной форме, а также для быстрого реагирования на изменение спроса и оптимизации цен.

Кроме повышения доступности данных, BI может предоставить компаниям больше преимуществ во время переговоров, упрощая оценку отношений с поставщиками и клиентами.

В рамках предприятия существует множество возможностей экономить деньги путем оптимизации бизнес-процессов и процесса принятия решений в целом. BI способен эффективно помогать в совершенствовании этих процессов, проливая свет на допущенные в них промахи. Например, сотрудники одной компании в Альбукерке использовали BI для определения путей сокращения использования мобильных телефонов, работы в сверхурочные часы и других текущих расходов, сэкономив для организации $2 миллиона за три года. Также, с помощью BI-решений, Toyota осознала, что вдвое переплатила своим перевозчикам общей суммой $812 000 в 2000 г. Использование BI-систем для обнаружения дефектов в бизнес-процессах ставит компанию в более выгодное положение, давая конкурентное преимущество перед компаниями, которые используют BI просто для того, чтобы отслеживать происходящее.

Еще несколько советов по использованию BI

  • Проанализируйте, как принимают решения руководители.
  • Подумайте, какая информация нужна руководителям для оптимизации принятия оперативных управленческих решений.
  • Обращайте внимание на качество данных.
  • Продумывайте показатель эффективности, который имеет наибольшее значение для бизнеса.
  • Обеспечивайте контекст, который влияет на показатель эффективности.

И помните, BI — это нечто большее, чем поддержка принимаемых решений. Благодаря развитию технологий и тому, как их внедряют руководители IT-департаментов, системы бизнес-анализа обладают потенциалом трансформировать организации. IT-директора, которые успешно используют BI для улучшения бизнес-процессов, вносят гораздо более значимый вклад в деятельность свой организации, руководители, внедряющие базовые инструменты составления отчетов.

Пилотный проект на платформе QlikView

По материалам www.cio.com

1solution.ru


Смотрите также